

Handedness，Footedness，Eydness，Earedness among University Students in Japan

メタデータ	言語：eng
	出版者：
	公開日：2017－12－05
	キーワード（Ja）：
	キーワード（En）：
	作成者：KUMAR，Surender，KIM，Yong Seob，OH，Kun
	Seok，KUMAR，Surender，KIM，Yong Seob，OH，Kun
	Seok メールアドレス： 所属：
URL	https：／／chikushi－u．repo．nii．ac．jp／records／924

Handedness, Footedness, Eyedness, Earedness among University Students in Japan

Surender KUMAR, Yong Seob KIM, and Kun Seok OH

Abstract

Handedness, footedness, eyedness, earedness among university students of $2^{\text {nd }}$ year and $3^{\text {rd }}$ year were examined for unilateral activities using a scale sampling procedure on one time. Side-bias questionnaire was utilized to choose the activities for side preferences. Students exhibited strong hand and foot preferences, but not to the same extent in eye and ear sidedness preferences.

Introduction

Side preferences in hand are usually influenced by social sanctions, and behavioral oriented as seen globally. Parents usually point out for hand side use from infant to elementary school age, and many times exhibit a strong pressure to make use of the right hand as found in many Asian countries. Though the side influence on foot is relatively less; and hardly observed to be pointed out in eye and ear side use. The normal process of side bias involves asymmetrical use of paired organs (like hand, foot, eye, and ear) for most behavioral functions. By side bias we mean preferential use of one side of the body as a function of preference or performance (Bryden, 1982; Mandal, Bulman-Fleming, \& Tiwari, 2000). Side bias is considered important for the purpose of resource allocation and effective motoric-coping with the environment. The asymmetrical use of paired organs is primarily controlled by the two sides of the human brain. Since the left hemisphere is dominant for most individuals (about 90\%), the contralateral side of the body (the right hand, the right foot) is more preferred for motor functions. The right hemisphere controls the left side of the body, and the left hemisphere controls the right side. In most people, the left hemisphere regulates language and speech, and the right hemisphere controls nonverbal, spatial skills. If the right side of the brain is damaged, movement of the left arm and leg, vision on the left,
and/or hearing in the left ear may be affected. Injury to the left side of the brain affects speech and movement on the right side of the body. Each half of the brain is divided into main functional sections, called lobes. There are four lobes in each half of the brain: the Frontal Lobe, Temporal Lobe, Parietal Lobe, and Occipital Lobe. Other important sections of the brain are the Cerebellum and the Brain Stem. Although not usually divided into lobes, the cerebellum and brain stem both have different parts. Each of the brain hemispheres and lobes, cerebellum, and brain stem has specific functions, and they all work together: Frontal Lobe: most anterior, right under the forehead; the frontal lobe controls intellectual activities, such as the ability to organize, as well as personality, behavior, and emotional control. Parietal Lobe: near the back and top of the head above the ears; the parietal lobe controls the ability to read, write, and understand spatial relationships. Occipital Lobe: most posterior, at the back of the head; the occipital lobe controls sight. Temporal Lobe: side of head above ears situated immediately behind and below the frontal lobes; the temporal lobe controls memory, speech and comprehension. Brain Stem: lower part of brain, leads to spinal cord; the brain stem contains nerve fibers that carry signals to and from all parts of the body. The brain stem also regulates body functions such as consciousness, fatigue, heart rate, and blood pressure. Damage to the brain stem can cause loss of consciousness. Cerebellum: located at the base of the skull; it is a curved mass of nerve tissues that regulates balance and coordinates fine motor skills; it enables us to move quickly and smoothly. Grey and White Matter: The brain is made up of two types of tissue, grey matter and white matter. Grey matter is involved in analyzing information. White matter conducts information between grey matter areas. The ratio of grey to white matter changes over the lifespan (Northeastern.edu, 2010).

The landmark work by Geschwind - Behan - Galaburda (Geschwind \& Behan, 1982; Geschwind \& Galaburda, 1986), known as G-B-G model, implicated anomaly in hemispheric dominance associated with neurodevelopmental disorders including autism. Subsequently studies were conducted to examine the GBG model with all forms of developmental disorders too. The general findings suggested a left hemisphere dysfunction associated with the disorders while some researchers also suggested atypical dominance indicating lack of dominance in either hemisphere of the brain (see Bishop, 1990).

Keeping these issues in view, we examined hand, foot, eye, and ear preference of university students using a self-rated scale method. We decided to examine side bias through this method to ensure the consistency in performance of an activity. Footedness was included as a measure to examine side bias in long limbs, in general. Foot behavior, unlike handedness, is not subjected to social sanctions, less likely the eye, and least likely the ear subjected to the social sanctions, therefore are found to be a reliable indicator of side bias. We predicted anomalous side bias in
general students, based on the proposition of GBG model (Geschwind \& Behan, 1982; Geschwind \& Galaburda, 1986).

Method

Sample

University second year and third year students in Japan were considered for the study. The students did not have any apparent motor difficulty that may hinder their daily functioning or any kind of disability or disease in hand, foot, eye, and ear. A brief introduction of the study was given to the students and informed consents were taken prior to administer the study questionnaire. They were asked to rate the items as per their own recognitions and feelings as they use in their day to day life to avoid any initial pressure of changing their hand, foot, eye, ear preferences.

The participants were female students ($2^{\text {nd }}$ year, $N=227$, Mean age 19.3 yr ., $\mathrm{SD}=.51 ; 3^{\text {rd }}$ year, $N=77$, Mean age 20.4 yr., $\mathrm{SD}=.48$) Students also did not have any other kind of motor problem or mental health problem as none of them reported.

Tools \& Procedure

Japanese version of the Questionnaire for Hand-Foot-Eye-Ear Preferences (QHFEEP) were administered among the students. There were total 26 items in the scale. 10 items on handedness, 6 items on footedness, 5 items on eyedness and 5 items on earedness. They were asked to rate each item information as they use their right side (R) or left side (L) in day to day life. Laterality quotient was not studied.

The questions Included in the hand preference activities were (a) using a chopstick, (b) combing hair, (c) picking up a book from a rack, (d) picking up a suitcase, (e) brushing teeth, (f) throwing a ball to hit a target, (g) unscrewing a jar lid, (h) using an eraser on paper, (i) hammering a nail, and (j) writing on paper. The foot behavior was also rated. Included in these activities were (a) kicking a ball, (b) picking up a pebble with toes, (c) stumping on an insect, (d) stepping up on a chair, (e) first foot use when climbing stairs, and (f) foot use when start riding a cycle. The eyedness included as (a) seeing in a telescope, (b) seeing in a pipe, (c) seeing into a bottle, (d) seeing into a narrow slit, and (e) seeing through the door peephole. The earedness included as (a) listen to a phone call, (b) listening to a small unclear voice, (c) listening to a voice coming from your back side, (d) putting an earphone, and (e) listening to a small voice coming from a closed room. The items were newly framed and some were part of a Side Bias Questionnaire which was earlier validated in other countries including Japan (Ida et al., 2001; Mandal et al., 1992; Mandal et al., 2001). Questionnaire items were self-rated by the participants and third person observers were not included.

Results \& Discussion

The mixed data on right and left hand preference response rating for each subject was averaged across items for handedness, footedness, eyedness, and earedness separately, and in total. These scores were then loaded for percentage calculations for each subject. The mean scores were not calculated as the items were marked on, right side as labelled 1 , and left side as labelled 2 . Table 1 suggests the handedness, footedness, eyedness, and earedness pattern of each subject.
Side preferences of students were found to be in total of hand, foot, eye, and ear was, 92.1% the right side preference and 7.89 the left side preference. The total preference was similar to that of any Asian country.
On handedness, $3^{\text {rd }}$ year students exhibited slightly more use (16.62%) than $2^{\text {nd }}$ year students (15.22%) in left side. On right side, $2^{\text {nd }}$ year students showed more use (86.78%) than $3^{\text {rd }}$ year students (83.34%). In total, left side was 14.08%, and right side was 85.92%. The finding is a sharp departure of what we observe in normal population. About 90% of the human population is said to be right handed. The incidence of left-handedness has been found to be as low as four to six percent in traditional societies like Asia and Africa (for example, India 6.8\%: Mandal, Pandey, Singh, \& Asthana, 1992; Japan 4.7\%: Ida, Dutta, \& Mandal, 2001), while in modern societies like the United States, Canada, and England it averages at 15-20\% (Perelle \& Ehrman, 1994; Suar, Misra, Mandal, \& Suman, 2008). The study results on hand preferences were close to the European or American preferences.

On footedness, $3^{\text {rd }}$ year students did not differ strongly (13.42\%) than $2^{\text {nd }}$ year students (12.63\%) in left side use. On right side also, $3^{\text {rd }}$ year students did not differ (86.58%) than 2 nd year students (87.37%). In total, left side was 12.83%, and right side was 87.17%. Again the footedness results were close to the handedness. Foot preferences were more reliable without much influence of social behaviour restrictions or sanctions.
On eyedness, $33^{\text {rd }}$ year students did differ at large extent (24.68\%) than $2^{\text {nd }}$ year students (28.55\%) in left side use. On right side also, $3^{\text {rd }}$ year students differed (75.32\%) than 2 nd year students (71.45%). In total, left side was 27.57%, and right side was 72.43%. Eyedness results also did not altered by social behaviour constraints. Eyedness results showed that side use is not so much related to the handedness or footedness. Use of eye though was preferred as per the side but strongly rated greater than on hand or foot use.

On earedness, $3^{\text {rd }}$ year students did differ remarkable (34.03%) than $2^{\text {nd }}$ year students (29.07\%) in left side use. On right side also, $3^{\text {rd }}$ year students differed (65.97\%) than 2 nd year students (70.93%). In total, left side was 30.33%, and right side was 69.67%. Ear sidedness results also did not altered much by social behaviour constraints or sanctions and a frequent use of ear was shown without
considering the side bias, though right hand preference students rated more the right ear use. Earedness results showed that side use is not so much related to the handedness or footedness or eyedness results. Use of ear was also preferred as per the side but remarkably rated greater than on hand, foot, or eye use.

Overall, we see the trend in the study that there are more chance that handedness was strongly influenced on side-bias, footedness relatively less influenced by side-bias, eyedness very less influenced by side-bias, and earedness was least influenced by the side-bias. These findings reflects that people feel strong social constraints or social sanctions on handedness, and noticeably less influence on footedness as a social constraints or sanctions, factor though the better rated on right footedness may be influenced by the habitual or biological factors rather than the social behavioural pressures. The eyedness and earedness were also least affected by social behaviour pressures and one can feels that side use of eye and ear is hardly pointed out or exert a pressure to be noted by the parents or by the surrounding people. Eyedness and earedness were better rated on right that may also be considered to be a habitual or biological factor and least likely to be altered by social sanctions.

The findings thus support the original conjecture of GBG Model (Geschwind \& Behan, 1982; Geschwind \& Galaburda, 1986) which indicated anomalous dominance or side bias. The GBG Model proposed that high intrauterine hormonal exposure, especially testosterone, alters natural cerebral dominance pattern to individuals resulting in anomalous side dominance. The hormonal exposure also alters the brain structures like thymus which, in turn, cause damage to immune system.

Anomalous dominance pattern has been observed in other studies including disability as well with a somewhat different notion. For example, in deaf children, anomalous hand dominance has been reported (Mandal et al., 1999). Language deficit is also found to be associated with atypical handedness in mental retardation (Lucas et al., 1989). These studies link atypical or anomalous handedness with reduced activation in the dominant hemisphere or some form of pathology in the brain including early cerebral insult. The use of side preferences was found different in the children with developmental disorders (Kumar et. al, 2010). Though some social prepositions are there to points out to the phenomenon which seems to be invariant to cultural predisposition. To avoid cultural predisposition, footedness was included as a measure of side bias. In a recent study it has been found that there is a clear interrelatedness between the long limbs (hand, foot) with the cerebral lateralization pattern (Kumar et al., 2012), pointing out to a common biological mechanism for side bias including eyedness and earedness.

Table 1. Handedness, Footedness, Eyedness, Earedness, Mean, SDs, and Percentage of $2^{\text {nd }}$ Year $(N=227$, Mean age $=19.3, S D=.51)$ and $3^{\text {rd }}$ Year $(N=77$, Mean age $=20.4, S D=.48)$ and Total ($N=304$, Mean age $=19.6, S D=.67$) university students.

Preferences	$2^{\text {nd }}$ Year			$3{ }^{\text {rd }}$ Year			Total		
$\begin{aligned} & L=\text { Left } \\ & R=\text { Right } \end{aligned}$	Side	Items Score	\%	Side	Items Score	\%	Side	Items Score	\%
Handedness	L	300	15.22	L	128	16.62	L	428	14.08
	R	1970	86.78	R	642	83.34	R	2612	85.92
Footedness	L	172	12.63	L	62	13.42	L	234	12.83
	R	1190	87.37	R	400	86.58	R	1590	87.17
Eyedness	L	324	28.55	L	95	24.68	L	419	27.57
	R	811	71.45	R	290	75.32	R	1101	72.43
Earedness	L	330	29.07	L	131	34.03	L	461	30.33
	R	805	70.93	R	254	65.97	R	1059	69.67
Total no.	L	17	7.49	L	7	9.1	L	24	7.89
	R	210	92.51	R	70	90.9	R	280	92.1

References

Bishop, D.V.M. (1990). Handedness and developmental disorders. London: Mac Keith Press: London. Bryden, M.P. (1982). Laterality: Functional asymmetry in the intact brain. Academic Press: New York. Geschwind, N. \& Behan, P. (1982). Left handedness: Association with immune disease, migraine, and developmental learning disorder. Proceedings of National Academy of Science, USA, 79, 5097-5100. Geschwind, N. \& Galaburda, A.M. (1986). Cerebral lateralization: Biological mechanisms, associations and pathology - I. A hypothesis and a program for research. Archives of Neurology, 42, 428-459.

Ida, Y., Dutta, T., \& Mandal, M. K. (2001). Side bias and unintentional injurys in Japan and India. International Journal of Neuroscience, 111, 89-98.
Kumar, S., Misra, I., Suman, S., Suar, D., \& Mandal, M.K. (2010). Interrelationship of limb dominance and sensory functions across age. International Journal of Neuroscience, 120, 110-114.

Kumar, S., Mandal, M. K., Harizuka, S. (2012) Side bias in Autism: Handedness \& Footedness. Journal of Rehabilitation Psychology, 38(2), 15-19.
Lucas, J.A., Rosenstein, L.D., \& Bigler, E.D. (1989). Handedness and language among the mentally retarded: Implications for the model of pathological left handedness and gender differences in hemispheric specialization. Neuropsychologia, 27, 713-723.

Mandal, M.K., Asthana, H.S., Dwivedi, C.B., \& Bryden, M.P. (1999). Hand preference in the deaf. Journal of Developmental \& Physical Disabilities, 11, 265-273.
Mandal, M. K., Bulman-Fleming, M. B., \& Tiwari, G. (2000). Side bias: A neuropsychological perspective. North Holland: Kluwer Academic Publishers.

Mandal, M. K., Pandey, G., Singh, S. K., \& Asthana, H. S. (1992). Hand preference in India. International Journal of Psychology, 27, 433-42.

Mandal, M. K., Suar, D., \& Bhattacharya, T. (2001). Side bias and unintentional injurys: Are they related? International Journal of Neuroscience, 109, 139-146.

Northeastern University, 2010. Brain Structure and Function. Retrieved from: http://www.northeastern. edu/nutraumaticbraininjury/braintbi-anatomy/brain-functions/

Perelle, I. B., \& Ehrman, L. (1994). An international study of human handedness: The data. Behavior Genetics, 24, 217-227.

Suar, D., Misra, I., Mandal, M, K., \& Suman., S. (2008). Influence of Socio-cultural factors on handedness and footedness. Psychological Studies, 53, 28-33.

Questionnaire for Hand－Foot－Eye－Ear Preferences（QHFEEP）（For Participants）

Demographic data：
Name： \qquad利き手：右 • 左 Age： \qquad Sex：M F
Date： \qquad
L for left－side or R for right－side どちらかを選んでください。

どちらの「手」を使いますか：
1．お箸を持つとき $\mathrm{L} R$
2．髪の毛をとくとき
L R
3．棚から本を取り出すとき
L R
4．スーツケースを持つとき
L R
5．歯を磨くとき
L R
6．目標に向かってボールを投げるとき
L R
7．瓶のふたをひねって開けるとき
L R
8．消しゴムを使うとき
L R
9．釘を打つのにハンマーを持つとき
L R
10．紙に書くとき
L R
どちらの「足」を使いますか：
11．ボールをけるとき $\mathrm{L} \quad \mathrm{R}$
12．足の指で石を拾うとき
L R
13．虫を踏みつぶすとき
L R
14．椅子に上るとき
L R
15．階段を上り始めるとき
L R
16．自転車をこぎだすとき
L R どちらの「目」を使いますか：
17．望遠鏡で見るとき $L \quad R$
18．パイプの中をのぞくとき
L R
19．外から見えない瓶などの入れ物の中身を見るとき
L R
20．隙間に入ったものを見るとき
L R
21．ドアののぞき穴から見るとき
L R どちらの「耳」を使いますか：
22．電話で話すとき $\mathrm{L} \quad \mathrm{R}$
23．聞きづらい小さな音を聞くとき
L R
24．後ろから聞こえてくる音にどちらの耳をかたむけますか
L R
25．イヤーフォーンをどっちの耳に先に着けますか
L R
26．ドアが閉まった部屋の中から聞こえる音を聞きたいとき L R
（スレンダー・クマール：人間科学部人間形成専攻 教授）
（キム・ヨン・ソプ：朝鮮大学 教授）
（オー・クン・ソク：光州保健大学 教授）

